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In performing statistical studies in simulation science, it is typically required that one 
estimate the values of an integral of a function that is based on a simulation calculation. 
Oftentimes simulations tend to be costly in terms of computer time and usage. Therefore, 
the ability to accurately estimate integrals with a minimum number of function 
evaluations is a critical issue in evaluating simulation codes. 
 
The goal of the standard Monte Carlo (MC) technique is to estimate the integral of a 
function over a specified M-dimensional domain from evaluations of the function at 
points that are randomly chosen within that domain. The objective in Quasi-Monte Carlo 
(QMC) is to improve those estimates through a suitable specification of the sample point 
set. It has been shown that the rms integration errors from N samples for a fixed number 
of dimensions typically fall off as N^{-1} with QMC, much more quickly than with MC, 
namely, N^{-1/2}.  
 
Digital halftoning is the process of creating a pattern of black dots on a white background 
to create the illusion of a gray-scale image. One of the principal goals in halftoning is to 
avoid introducing undesirable texture into the rendered image, which is typically caused 
by clumping of the dots, or uneven dot placement that accompanies random dot 
distributions. In a sense, QMC has the same goal, whether it is implicitly or explicitly 
stated. The clumpiness in random point distributions also exists in standard Monte Carlo, 
and leads to lower sampling efficiency than more uniformly distributed point 
distributions.  
 
I will outline the parallels between QMC and halftoning, and describe a halftoning-
inspired algorithm for generating a sample set with uniform density, which yields smaller 
integration errors in two dimensions than standard QMC algorithms. It must be kept in 
mind that the same algorithms that work for 2D may not work for higher dimensions. I 
will discuss the implications for higher dimensions and other potential approaches to 
enhanced QMC methods. 
 
In standard Monte Carlo techniques, one evaluates integrals on the basis of a set of point 
samples. The estimate of the integral of a function f(x) of the parameter vector x is 
proportional to a sum over the values of the function evaluated at N sample points x_i, 
which are randomly drawn from a uniform probability density function defined over the 
integration region. The objective of the quasi-Monte Carlo technique is to reduce the 
number of function evaluations needed to obtain a given accuracy in Monte Carlo-type 
integration, and to accelerate its convergence as N increases. This goal is typically 
achieved. One useful feature of QMC is that any number of samples can be generated. 



Furthermore, an arbitrary number of additional samples can be added to an existing set of 
samples. 
 
The direct-binary-search (DBS) technique represents one of the best approaches to 
producing high-quality digital halftoned images. It is based on a simple model for the 
human visual system in which the image seen by a human eye is simply a blurred version 
of the actual external scene.  The DBS algorithm attempts to minimize the difference 
between the original gray-scale image to be rendered and the dot image, as perceived by 
the human. To quantify the perceived discrepancy between the halftone image and the 
actual gray-scale image, the most-often-used cost function is the total power in the error 
image. The goal of the DBS algorithm is then to minimize the mean-squared value of the 
difference between the two blurred images. 
 
Taking a cue from the DBS algorithm, the proposed algorithm for generating quasi-MC 
points attempts to minimize the visual discrepancy (MVD) between a set of points and an 
image with uniform density. Starting with some arbitrary point pattern, the MVD 
algorithm considers each point in the set in a randomly permuted order. Each point is 
perturbed in eight different directions, parallel to the axes and along the diagonals, and 
the point is placed in the position with the lowest value of the objective function. This 
procedure is repeated until all points are visited a number of times. This algorithm 
produces point set patterns with very desirable halftoning properties, which are 
essentially indistinguishable from DBS patterns. More importantly, when used to 
evaluate a variety of integrals in the Monte Carlo manner, estimates of the integrals are 
more accurate than those obtained with typical quasi-MC point sets. For example, one of 
the test functions used is exp(-2|x - x_0|) exp(-2|y - y_0|), where the accuracy of its 
integral over the unit square is averaged over positions (x_0, y_0) distributed uniformly 
over the unit square. For N = 100 sample points, the rms relative accuracy of the integrals 
of this function are 8%, 1.8%, and 0.8%, for a random points, a Halton sequence (a 
typical QMC point set), and the proposed MVD point set, respectively. The same 
advantage of the MVD point sets is observed for other values of N. Its accuracy relative 
to standard randomly-chosen points steadily improves as N increases; at N = 1000, it is 
over 20 times more accurate. Translated into the number of function evaluations needed, 
the use of random points would require over 400 times more function evaluations than 
MVD to achieve comparable integration accuracy. 
 
The algorithm used for the preceding evaluations in two dimensions is not appropriate for 
even moderately high dimensions. The reason is that it is based on a pixilated version of 
the point image. This implies the necessity for storing a discretized image in M 
dimensions, which may be infeasible when M gets larger than four or five, even when 
coarsely discretized in each dimension.  
 
Another approach to generating a suitable point set, which can be shown to be equivalent 
to MVD, is to draw an analogy between the point set and a collection of particles, which 
interact by means of a potential field. The potential field can be chosen so that the 
particles repel each other at close distances, but are less repulsive when they are 
sufficiently far apart. This type of action occurs in the MVD approach, although it is not 



explicit. Appropriate conditions need to be specified at the boundary of the region. The 
advantage of this potential-field approach is that an integral over the M-dimensional 
domain is not required to evaluate the cost function.  
 
Initial results indicate that this potential-field approach is very promising. In two 
dimensions, point sets generated with this approach produce integration accuracies that 
are comparable to those obtained with MVD. Similar advantages are observed in higher 
dimensions.  


